A jab and a light to burn the fat away

The specially-developed hydrogel is injected into a fat deposit directly under the skin (represented by a model here), before being exposed to a near infrared light to break down the fat. — NTU Singapore

Scientists at Nanyang Technological University in Singapore (NTU Singapore) have developed a new therapeutic approach to obesity and related metabolic disorders.

In laboratory experiments, this new approach demonstrated a significant reduction in body fat and body weight, as well as improvement in the blood markers that accompany these disorders.

Developed by a team from the university’s School of Chemical and Biomedical Engineering, their method begins with an injection of a specially-developed hydrogel using an insulin needle, into a fat deposit directly under the skin.

A near infrared light is then shone on the site of the injection for five minutes a few times daily, over a few days, activating the hydrogel’s fat-burning ability.

Through laboratory experiments reported in the science journal ACS Nano in December (2021), the scientists showed that mice on a high-fat diet that went through this treatment were lighter in body mass after two weeks, compared to obese mice in the group that did not receive the treatment.

The treated mice also had 40% less subcutaneous fat (directly under the skin) and 54% less visceral fat (wrapped around internal organs deep inside the body).

In addition, they showed lower levels of cholesterol and insulin resistance, indicating the treatment’s potential to reduce the risk of metabolic disorders.

The scientists believe their innovation could one day become an alternative to costly fat reduction procedures that target only subcutaneous fat, and obesity drugs approved by the US Food and Drug Administration (FDA) that often come with side effects.

NTU professor of bioengineering Dr Chen Peng, who led the study, explained: “All US FDA-approved medications for obesity indirectly act on the brain to suppress appetite or on the digestive system to reduce fat absorption.

“Most of them have been withdrawn from the market due to their serious side effects.

“Procedures performed in clinics to remove fat in targeted areas have been shown to be effective, but they come with risks and high cost, and do not improve body metabolism.

“In contrast, our therapeutic approach focuses on remodelling white fat tissue, which is the root of the evil.”

He added: “Through lab experiments, we found that this approach not only resulted in 40% to 54% fat reduction in obese mice, but also significantly improved their metabolism, which is key to reducing the risk of metabolic conditions such as heart disease, stroke and type 2 diabetes.

“Though this method makes use of heat converted from near infrared light to burn subcutaneous fat, we found no thermal injury to the skin.”

Senior consultant endocrinologist Associate Prof Dr Melvin Leow, who was not involved in the study, said: “This paper describes very interesting advances in the armamentarium against obesity and insulin resistance, the precursor of diabetes.

“Importantly, though the work reported here was done on mice and on pig skin tissues, there is much optimism in terms of translation to human beings.

“Overall, I find this method holds great promise as the next generation of therapeutic agents to combat against obesity and type 2 diabetes.”

Based on these findings, the NTU team envisions that an obese patient at home could one day self-inject the therapeutics into belly fat at multiple sites using an insulin needle once a week.

Subsequently, the patient can shine a hand-held laser at each injection site for five minutes one to three times daily for several days.

The scientists have filed a patent for their innovation.

A near infrared light is shined on the injection site (represented by a model here) to activate the gel’s fat-burning ability.A near infrared light is shined on the injection site (represented by a model here) to activate the gel’s fat-burning ability.

Three-pronged approach

The key to this new therapeutic approach lies in its ability to activate TRPV1, a protein that detects heat and pain.

When activated, this protein can trigger a process called browning, i.e. the conversion of white fat to brown fat.

White fat stores the extra calories we take in and leads to obesity when in excess.

Meanwhile, brown fat is a calorie-burning tissue that mitigates the harmful consequences of obesity, but is scarce in adults.

The TRPV1 activation promotes lipolysis at the same time, in which fat droplets are broken down into fatty acids.

Some of these fatty acids are used by the newly-converted brown fat to burn calories; others enter the bloodstream and are broken down further in the liver and muscles.

TRPV1 activation also stimulates the secretion of adiponectin, a hormone that promotes glucose and lipid metabolism in the liver and muscles, and enhances insulin sensitivity, allowing the body to use glucose and fatty acids more efficiently.

The scientists first developed a hydrogel that contains copper sulphide nanoparticles.

When exposed to near infrared light, these nanoparticles convert light energy into heat to activate TRPV1.

The team showed in their study that the nanoparticles have negligible toxic effects on vital organs or tissues.

Also in the hydrogel is mirabegron, a US FDA-approved drug for individuals with overactive bladders that the scientists repurposed to improve metabolic health by stimulating the browning of fat tissues.

To ensure that the therapeutics in the hydrogel are not released all at once, the scientists added a US FDA-approved polymer called Pluronic F127.

This imbues the hydrogel with a runny nature at a low temperature, and a gel-like nature at body temperature.

The gel-like nature helps to retain the therapeutics over several days after the hydrogel is injected into the body, said the scientists.

Double the benefits

To investigate the anti-obesity effects of their therapeutic approach, the scientists put obese mice with signs of metabolic diseases through a two-week treatment regime.

The hydrogel was first injected into subcutaneous fat, before near infrared light was shone on the injection site for five minutes for three days, followed by four days of rest.

This was repeated for another week.

Over the two weeks, the body weight of obese mice without treatment went up by 9.5%.

This is in contrast to the 5.5% dip in body weight of the mice that went through the treatment.

In treated mice, there was a 40% reduction in subcutaneous fat and 54% drop in visceral fat.

The therapeutic approach also led to a 54% reduction in cholesterol and 65% drop in insulin resistance associated with obesity.

Prof Chen said: “Without the addition of the US FDA-approved mirabegron in our injectable hydrogel, our therapeutic approach already showed outstanding fat reduction, with obese mice losing 27% subcutaneous fat and 44% visceral fat.

“But we found that adding the drug helped to suppress insulin resistance and bring down insulin to normal levels.

“This means that our approach could potentially also be used to treat other metabolic diseases associated with obesity, such as diabetes.”

The team is now looking to collaborate with clinical partners to conduct clinical trials on human subjects in order to further test their therapeutic approach to tackle obesity.

They are also studying how this treatment method could be applied for cosmetic uses such as body shaping.

Article type: metered
User Type: anonymous web
User Status:
Campaign ID: 1
Cxense type: free
User access status: 3
Subscribe now to our Premium Plan for an ad-free and unlimited reading experience!

Next In Health

Considering the merits of spirulina and green tea
Using peer support specialists to help drug addicts
Pregnant and experiencing back pain? Try acupuncture
Why have I been reinfected with Covid-19 despite being vaccinated?
Dealing with the mental health impact of psoriasis
Inflammatory bowel disease can significantly disrupt a person's daily life
Scientists aim to double cancer survival within a decade
No place for racism in healthcare (or anywhere)
The second top killer in the world is bacteria
Loading up on nutrients to help fight disease and maintain health

Others Also Read