The advantages of sperm teaming up to get to the egg


Sperm that team up to swim together are able to better make their way against any currents in the female reproductive tract, according to a new study. — Frontiers

It turns out sperm go against the flow better when they swim together.

Despite the popular idea that the fastest and fittest male reproductive cell is the one that wins the fertilisation race, research has shown that spermatozoa often team up to navigate the female reproductive tract in a wide range of mammalian species.

A new study published in the journal Frontiers in Cell and Developmental Biology offers some compelling reasons behind a newly-identified clustering behaviour.

Previous research by the team, led by scientists out of North Carolina A&T State University and Cornell University in the United States, first discovered that sperm naturally pull together without attaching to each other when swimming in viscoelastic fluid.

This is the type of fluid encountered by sperm migrating through the cervix and uterus to the oviduct where the egg is fertilised.

The term viscoelasticity refers to both thickness and elasticity – think melted cheese.

However, teams of unattached sperm do not outrun the solo swimmers, as they do in other examples of group behaviour.

For instance, the wood mouse sperm head has a hook that physically attaches it to other sperm, linking hundreds to thousands in a sort of sperm train that is speedier than lone sperm.

Going against the flow

The researchers wanted to learn the possible biological benefits of this seemingly strange behaviour at a scale and in a setting that’s not easy to study – specifically, currents of viscoelastic fluid flowing through narrow channels in the female reproductive tract.

In a series of experiments using bovine sperm (a good model for the human variety) and a microfluidic device to mimic the physical parameters of the female tract, they observed how sperm clustered in viscoelastic fluid reacted to different flow scenarios.

They found three potential biological benefits to sperm clustering, based on the strength of the current that the sperm must travel against.

First, in the absence of flow, clustered sperm seem to change direction less frequently and swim in a straighter line.

Against a mild to intermediate flow, clustered sperm are better aligned, like a school of fish heading upstream.

Finally, under high physiological flow rates, there appears to be safety in numbers against being carried away by the strong flow.

"In general, I would say that identification of motility advantages that are not speed enhancement is not usual, and therefore significant.

In some ways, we open new avenues for examination of sperm performance,” noted study co-author and North Carolina A&T State University associate professor in physics Dr Tung Chih-kuan.

Fertility needs physics

As a trained physicist, Assoc Prof Tung said he is particularly intrigued in the protective dynamics at play when the flow is heaviest.

"This may resemble the peloton formation in biking, although the fluid mechanics for sperm is drastically different from the bikers.

"We would certainly want to know more about this.”

Watching sperm swim isn’t just a scientific sport.

Better understanding the physics of how sperm navigate through the complicated female reproductive tract to fertilise the egg may have implications for infertility treatments and beyond.

"In the longer term, our understanding may provide better selection of sperm used for intervention such as in-vitro fertilisation (IVF) or other assisted-reproduction technologies,” he said.

"This may be needed as [these methods] typically skip some or all of the selection mechanisms present in the female tract and yield less favourable results.”

Article type: free
User access status:
Subscribe now to our Premium Plan for an ad-free and unlimited reading experience!

Sperm , men's health , fertility

   

Next In Health

Don’t scold your child for bed-wetting, it's only normal
New government needs to address fundamental healthcare issues
Drinking more water, and other habits that can strengthen your immune system
It's time to heal and reconcile now that GE15 is over
Hot water bottle fans, you could get this syndrome
Antibody therapies ineffective against Omicron variant BQ.1.1, says study
How to prevent those unsightly and painful bunions
Is your high blood pressure making you neurotic?
Considering the merits of spirulina and green tea
Using peer support specialists to help drug addicts

Others Also Read