Covid-19: AI tool predicts which coronavirus patients get deadly ‘wet lung’

  • AI
  • Tuesday, 31 Mar 2020

A medical personnel store medical samples of patients at a ‘drive-thru’ coronavirus testing lab set up by local community centre in West Palm Beach 75 miles north of Miami. Researchers in the US and China reported they have developed an AI tool that is able to accurately predict which newly infected patients with the novel coronavirus go on to develop severe lung disease. — AFP

WASHINGTON: Researchers in the US and China reported on March 30 they have developed an artificial intelligence tool that is able to accurately predict which newly infected patients with the novel coronavirus go on to develop severe lung disease.

Once deployed, the algorithm could assist doctors in making choices about where to prioritise care in resource-stretched health care systems, said Megan Coffee, a physician and professor at New York University’s Grossman School of Medicine who co-authored a paper on the finding in the journal Computers, Materials & Continua.

The tool discovered several surprising indicators that were most strongly predictive of who went on to develop so-called acute respiratory disease syndrome (ARDS), a severe complication of the Covid-19 illness that fills the lungs with fluid and kills around 50% of coronavirus patients who get it.

The team applied a machine learning algorithm to data from 53 coronavirus patients across two hospitals in Wenzhou, China, finding that changes in three features — levels of the liver enzyme alanine aminotransferase (ALT), reported body aches, and hemoglobin levels — were most accurately predictive of subsequent, severe disease.

Using this information along with other factors, the tool was able to predict risk of ARDS with up to 80% accuracy.

By contrast, characteristics that were considered to be hallmarks of Covid-19, like a particular pattern in lung images called “ground glass opacity”, fever, and strong immune responses, were not useful in predicting which of the patients with initially mild symptoms would get ARDS.

Neither age nor sex were useful predictors either, even though other studies have found men over 60 to be at higher risk.

“It’s been fascinating because a lot of the data points that the machine used to help influence its decisions were different than what a clinician would normally look at,” Coffee told AFP.

Using AI in medical settings isn’t a brand new concept — a tool already exists to help dermatologists predict which patients will go on to develop skin cancer, to give just one example.

What makes this different is that doctors are learning on the fly about Covid-19, and the tool can help steer them in the right direction, in addition to helping them decide which patients to focus on as hospitals become overwhelmed, said co-author Anasse Bari, a computer science professor at NYU.

The team is now looking to further refine the tool with data from New York and hope it is ready to deploy sometime in April. — AFP

Article type: metered
User Type: anonymous web
User Status:
Campaign ID: 1
Cxense type: free
User access status: 0
Subscribe now to our Premium Plan for an ad-free and unlimited reading experience!

Next In Tech News

FTX founder Bankman-Fried objects to tighter bail, says prosecutors 'sandbagged' him
As they enter a 4th generation, are foldable phones finally mature?
This free tool lets you extract text from images
Google Stadia is dead, but its controllers live on
Twitter says users will be able to appeal account suspension
New smart-home standard for Android and Google devices has arrived
In NBA version of 'Pok�mon Go' you seek basketball pros, not monsters
U.S. SEC probes Elon Musk's role in Tesla self-driving claims - Bloomberg News
Twitter research group stall complicates compliance with new EU law
Top French university bans use of ChatGPT to prevent plagiarism

Others Also Read