Britain faces huge costs to avoid power shortages with electric car plan


  • Business
  • Saturday, 02 Sep 2017

BRITAIN must plough billions of pounds into new power plants, grid networks and electric vehicle charging points if it is to avoid local power shortages when a planned ban on new diesel and petrol cars begins.

Supporting millions more battery-powered vehicles over the next two decades is technically feasible, and if drivers can be persuaded to recharge them overnight – when spare power capacity is abundant – the huge infrastructure cost could be kept down.

Local networks particularly face problems, so the country will need a range of technologies for managing consumption to meet an estimated rise of up to 15% in overall demand and prevent spikes of up to 40% at peak times.“It will be a challenge and a lot of investment is required – in generation capacity, strengthening the distribution grid and charging infrastructure,” says Johannes Wetzel, energy markets analyst at Wood Mackenzie.

In July, the government said it would ban the sale of new petrol and diesel cars and vans from 2040. The aim is to reduce air pollution, a source of growing public health concerns, and help Britain to cut carbon emissions by 80% by 2050 from 1990 levels – the target it has set itself.

Although some conventional cars will remain on the road, numbers of electric vehicles (EVs) could balloon to 20 million by 2040 from around 90,000 today, experts estimate. Charging them all will require additional electricity.

Britain already faces a power supply crunch in the early 2020s as old nuclear reactors come to the end of their lives and remaining coal-fired plants are phased out by 2025.

Four years ago, well before the conventional car ban was raised, the government said over £100bil (US$130bil) in investment would be needed to ensure clean, secure electricity supplies and to reduce demand.

That looks optimistic. The cost of Hinkley Point C alone, the only nuclear power station now under construction in Britain, is estimated at £19.6bil.

Gas plants are cheaper and faster to build but investment in new ones is flat, and they still produce carbon emissions.

Renewable energy presents problems of matching supply and demand; solar panels for instance produce no power in the night when drivers would ideally recharge their electric cars.

Off-peak incentives

Estimates vary on future numbers of electric vehicles, as well as hybrids and those powered by hydrogen fuel cells which do not require mains electricity. However, several analysts surveyed by Reuters said anything up to an extra 50 terrawatt hours (TWh) would be needed for them by 2040.

Bernstein analysts say overall demand could increase by 41-49 TWh, or 13%-15% of current levels. However, a 15% rise would translate into a 40% jump in peak demand if drivers charged their cars between 6 and 9 pm, when electricity consumption is at its highest.

This problem can be eased by encouraging charging at night, when demand is currently only about a third of during peak periods. “We do not see the transition to EVs as posing a significant stress on peak demand if charging were incentivised to happen at off-peak times,” they say.

Britain has made progress in energy efficiency. Overall and peak power demand fell by around 14 percent between 2005 and 2016, even though the economy grew by the same amount.“There is definitely some slack in the transmission and distribution system to tolerate an increase in the peak demand,” according to Bernstein.

Its “extreme scenario” projection of a 40% rise in peak demand equates to 24 GW. But National Grid, which operates the transmission system, has said the rise in peak demand can be kept to 5 GW if there is smart charging and time-of-use electricity tariffs.

Such encouragement of off-peak EV charging by making power cheaper than at peak times of the day will be essential.“A very large peak demand could be the outcome if other things don’t happen, such as smart grids, smart charging and energy storage, although we expect these technology solutions to be developed to support increasing power demand within sensible peak levels,” says Richard Sarsfield-Hall, director at Poyry Management Consulting.

Feeling the pinch

While nationally there may be some slack, local grids and distribution networks could feel the pinch. A trial by Scottish and Southern Electricity Networks found that uncontrolled EV charging would double the usual domestic load to 2 kW when using a 3.5 kW charger. More powerful chargers would exacerbate the load strain further.

The company’s head of asset management and innovation, Stewart Reid, says up to 30% of its local networks could experience problems such as power loss if 40%-70% of its customers have EVs, based on 3.5 kW chargers.

Spreading out charging through the night could save around £2.2bil of expenditure in replacing or upgrading cables or transformers, he adds.

Capacity problems could also start in the home. National Grid says that drivers charging their cars at home might not be able to use items such as kettles, ovens and immersion heaters at the same time without tripping their house’s main fuse. ”The house electricity supply is one ‘pinch point’,” it says.

The piece raised another difficulty: it estimated that 43% of households have no off-street parking, meaning drivers could not recharge their cars overnight in their garage or driveway as they slept in their homes.

An alternative is more public power points at supermarkets, allowing cars to be charged while their owners shop inside. — Reuters

Article type: metered
User Type: anonymous web
User Status:
Campaign ID: 1
Cxense type: free
User access status: 3

Business , Electric car , power

   

Did you find this article insightful?

Yes
No

Across the site